climp

Dirty interpreter for the limp programming language in C

git clone https://git.8pit.net/climp.git

  1/*	$OpenBSD: queue.h,v 1.38 2013/07/03 15:05:21 fgsch Exp $	*/
  2/*	$NetBSD: queue.h,v 1.11 1996/05/16 05:17:14 mycroft Exp $	*/
  3
  4/*
  5 * Copyright (c) 1991, 1993
  6 *	The Regents of the University of California.  All rights reserved.
  7 *
  8 * Redistribution and use in source and binary forms, with or without
  9 * modification, are permitted provided that the following conditions
 10 * are met:
 11 * 1. Redistributions of source code must retain the above copyright
 12 *    notice, this list of conditions and the following disclaimer.
 13 * 2. Redistributions in binary form must reproduce the above copyright
 14 *    notice, this list of conditions and the following disclaimer in the
 15 *    documentation and/or other materials provided with the distribution.
 16 * 3. Neither the name of the University nor the names of its contributors
 17 *    may be used to endorse or promote products derived from this software
 18 *    without specific prior written permission.
 19 *
 20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 23 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 30 * SUCH DAMAGE.
 31 *
 32 *	@(#)queue.h	8.5 (Berkeley) 8/20/94
 33 */
 34
 35#ifndef	_SYS_QUEUE_H_
 36#define	_SYS_QUEUE_H_
 37
 38/*
 39 * This file defines five types of data structures: singly-linked lists, 
 40 * lists, simple queues, tail queues, and circular queues.
 41 *
 42 *
 43 * A singly-linked list is headed by a single forward pointer. The elements
 44 * are singly linked for minimum space and pointer manipulation overhead at
 45 * the expense of O(n) removal for arbitrary elements. New elements can be
 46 * added to the list after an existing element or at the head of the list.
 47 * Elements being removed from the head of the list should use the explicit
 48 * macro for this purpose for optimum efficiency. A singly-linked list may
 49 * only be traversed in the forward direction.  Singly-linked lists are ideal
 50 * for applications with large datasets and few or no removals or for
 51 * implementing a LIFO queue.
 52 *
 53 * A list is headed by a single forward pointer (or an array of forward
 54 * pointers for a hash table header). The elements are doubly linked
 55 * so that an arbitrary element can be removed without a need to
 56 * traverse the list. New elements can be added to the list before
 57 * or after an existing element or at the head of the list. A list
 58 * may only be traversed in the forward direction.
 59 *
 60 * A simple queue is headed by a pair of pointers, one the head of the
 61 * list and the other to the tail of the list. The elements are singly
 62 * linked to save space, so elements can only be removed from the
 63 * head of the list. New elements can be added to the list before or after
 64 * an existing element, at the head of the list, or at the end of the
 65 * list. A simple queue may only be traversed in the forward direction.
 66 *
 67 * A tail queue is headed by a pair of pointers, one to the head of the
 68 * list and the other to the tail of the list. The elements are doubly
 69 * linked so that an arbitrary element can be removed without a need to
 70 * traverse the list. New elements can be added to the list before or
 71 * after an existing element, at the head of the list, or at the end of
 72 * the list. A tail queue may be traversed in either direction.
 73 *
 74 * A circle queue is headed by a pair of pointers, one to the head of the
 75 * list and the other to the tail of the list. The elements are doubly
 76 * linked so that an arbitrary element can be removed without a need to
 77 * traverse the list. New elements can be added to the list before or after
 78 * an existing element, at the head of the list, or at the end of the list.
 79 * A circle queue may be traversed in either direction, but has a more
 80 * complex end of list detection.
 81 *
 82 * For details on the use of these macros, see the queue(3) manual page.
 83 */
 84
 85#if defined(QUEUE_MACRO_DEBUG) || (defined(_KERNEL) && defined(DIAGNOSTIC))
 86#define _Q_INVALIDATE(a) (a) = ((void *)-1)
 87#else
 88#define _Q_INVALIDATE(a)
 89#endif
 90
 91/*
 92 * Singly-linked List definitions.
 93 */
 94#define SLIST_HEAD(name, type)						\
 95struct name {								\
 96	struct type *slh_first;	/* first element */			\
 97}
 98 
 99#define	SLIST_HEAD_INITIALIZER(head)					\
100	{ NULL }
101 
102#define SLIST_ENTRY(type)						\
103struct {								\
104	struct type *sle_next;	/* next element */			\
105}
106 
107/*
108 * Singly-linked List access methods.
109 */
110#define	SLIST_FIRST(head)	((head)->slh_first)
111#define	SLIST_END(head)		NULL
112#define	SLIST_EMPTY(head)	(SLIST_FIRST(head) == SLIST_END(head))
113#define	SLIST_NEXT(elm, field)	((elm)->field.sle_next)
114
115#define	SLIST_FOREACH(var, head, field)					\
116	for((var) = SLIST_FIRST(head);					\
117	    (var) != SLIST_END(head);					\
118	    (var) = SLIST_NEXT(var, field))
119
120#define	SLIST_FOREACH_SAFE(var, head, field, tvar)			\
121	for ((var) = SLIST_FIRST(head);				\
122	    (var) && ((tvar) = SLIST_NEXT(var, field), 1);		\
123	    (var) = (tvar))
124
125/*
126 * Singly-linked List functions.
127 */
128#define	SLIST_INIT(head) {						\
129	SLIST_FIRST(head) = SLIST_END(head);				\
130}
131
132#define	SLIST_INSERT_AFTER(slistelm, elm, field) do {			\
133	(elm)->field.sle_next = (slistelm)->field.sle_next;		\
134	(slistelm)->field.sle_next = (elm);				\
135} while (0)
136
137#define	SLIST_INSERT_HEAD(head, elm, field) do {			\
138	(elm)->field.sle_next = (head)->slh_first;			\
139	(head)->slh_first = (elm);					\
140} while (0)
141
142#define	SLIST_REMOVE_AFTER(elm, field) do {				\
143	(elm)->field.sle_next = (elm)->field.sle_next->field.sle_next;	\
144} while (0)
145
146#define	SLIST_REMOVE_HEAD(head, field) do {				\
147	(head)->slh_first = (head)->slh_first->field.sle_next;		\
148} while (0)
149
150#define SLIST_REMOVE(head, elm, type, field) do {			\
151	if ((head)->slh_first == (elm)) {				\
152		SLIST_REMOVE_HEAD((head), field);			\
153	} else {							\
154		struct type *curelm = (head)->slh_first;		\
155									\
156		while (curelm->field.sle_next != (elm))			\
157			curelm = curelm->field.sle_next;		\
158		curelm->field.sle_next =				\
159		    curelm->field.sle_next->field.sle_next;		\
160		_Q_INVALIDATE((elm)->field.sle_next);			\
161	}								\
162} while (0)
163
164/*
165 * List definitions.
166 */
167#define LIST_HEAD(name, type)						\
168struct name {								\
169	struct type *lh_first;	/* first element */			\
170}
171
172#define LIST_HEAD_INITIALIZER(head)					\
173	{ NULL }
174
175#define LIST_ENTRY(type)						\
176struct {								\
177	struct type *le_next;	/* next element */			\
178	struct type **le_prev;	/* address of previous next element */	\
179}
180
181/*
182 * List access methods
183 */
184#define	LIST_FIRST(head)		((head)->lh_first)
185#define	LIST_END(head)			NULL
186#define	LIST_EMPTY(head)		(LIST_FIRST(head) == LIST_END(head))
187#define	LIST_NEXT(elm, field)		((elm)->field.le_next)
188
189#define LIST_FOREACH(var, head, field)					\
190	for((var) = LIST_FIRST(head);					\
191	    (var)!= LIST_END(head);					\
192	    (var) = LIST_NEXT(var, field))
193
194#define	LIST_FOREACH_SAFE(var, head, field, tvar)			\
195	for ((var) = LIST_FIRST(head);				\
196	    (var) && ((tvar) = LIST_NEXT(var, field), 1);		\
197	    (var) = (tvar))
198
199/*
200 * List functions.
201 */
202#define	LIST_INIT(head) do {						\
203	LIST_FIRST(head) = LIST_END(head);				\
204} while (0)
205
206#define LIST_INSERT_AFTER(listelm, elm, field) do {			\
207	if (((elm)->field.le_next = (listelm)->field.le_next) != NULL)	\
208		(listelm)->field.le_next->field.le_prev =		\
209		    &(elm)->field.le_next;				\
210	(listelm)->field.le_next = (elm);				\
211	(elm)->field.le_prev = &(listelm)->field.le_next;		\
212} while (0)
213
214#define	LIST_INSERT_BEFORE(listelm, elm, field) do {			\
215	(elm)->field.le_prev = (listelm)->field.le_prev;		\
216	(elm)->field.le_next = (listelm);				\
217	*(listelm)->field.le_prev = (elm);				\
218	(listelm)->field.le_prev = &(elm)->field.le_next;		\
219} while (0)
220
221#define LIST_INSERT_HEAD(head, elm, field) do {				\
222	if (((elm)->field.le_next = (head)->lh_first) != NULL)		\
223		(head)->lh_first->field.le_prev = &(elm)->field.le_next;\
224	(head)->lh_first = (elm);					\
225	(elm)->field.le_prev = &(head)->lh_first;			\
226} while (0)
227
228#define LIST_REMOVE(elm, field) do {					\
229	if ((elm)->field.le_next != NULL)				\
230		(elm)->field.le_next->field.le_prev =			\
231		    (elm)->field.le_prev;				\
232	*(elm)->field.le_prev = (elm)->field.le_next;			\
233	_Q_INVALIDATE((elm)->field.le_prev);				\
234	_Q_INVALIDATE((elm)->field.le_next);				\
235} while (0)
236
237#define LIST_REPLACE(elm, elm2, field) do {				\
238	if (((elm2)->field.le_next = (elm)->field.le_next) != NULL)	\
239		(elm2)->field.le_next->field.le_prev =			\
240		    &(elm2)->field.le_next;				\
241	(elm2)->field.le_prev = (elm)->field.le_prev;			\
242	*(elm2)->field.le_prev = (elm2);				\
243	_Q_INVALIDATE((elm)->field.le_prev);				\
244	_Q_INVALIDATE((elm)->field.le_next);				\
245} while (0)
246
247/*
248 * Simple queue definitions.
249 */
250#define SIMPLEQ_HEAD(name, type)					\
251struct name {								\
252	struct type *sqh_first;	/* first element */			\
253	struct type **sqh_last;	/* addr of last next element */		\
254}
255
256#define SIMPLEQ_HEAD_INITIALIZER(head)					\
257	{ NULL, &(head).sqh_first }
258
259#define SIMPLEQ_ENTRY(type)						\
260struct {								\
261	struct type *sqe_next;	/* next element */			\
262}
263
264/*
265 * Simple queue access methods.
266 */
267#define	SIMPLEQ_FIRST(head)	    ((head)->sqh_first)
268#define	SIMPLEQ_END(head)	    NULL
269#define	SIMPLEQ_EMPTY(head)	    (SIMPLEQ_FIRST(head) == SIMPLEQ_END(head))
270#define	SIMPLEQ_NEXT(elm, field)    ((elm)->field.sqe_next)
271
272#define SIMPLEQ_FOREACH(var, head, field)				\
273	for((var) = SIMPLEQ_FIRST(head);				\
274	    (var) != SIMPLEQ_END(head);					\
275	    (var) = SIMPLEQ_NEXT(var, field))
276
277#define	SIMPLEQ_FOREACH_SAFE(var, head, field, tvar)			\
278	for ((var) = SIMPLEQ_FIRST(head);				\
279	    (var) && ((tvar) = SIMPLEQ_NEXT(var, field), 1);		\
280	    (var) = (tvar))
281
282/*
283 * Simple queue functions.
284 */
285#define	SIMPLEQ_INIT(head) do {						\
286	(head)->sqh_first = NULL;					\
287	(head)->sqh_last = &(head)->sqh_first;				\
288} while (0)
289
290#define SIMPLEQ_INSERT_HEAD(head, elm, field) do {			\
291	if (((elm)->field.sqe_next = (head)->sqh_first) == NULL)	\
292		(head)->sqh_last = &(elm)->field.sqe_next;		\
293	(head)->sqh_first = (elm);					\
294} while (0)
295
296#define SIMPLEQ_INSERT_TAIL(head, elm, field) do {			\
297	(elm)->field.sqe_next = NULL;					\
298	*(head)->sqh_last = (elm);					\
299	(head)->sqh_last = &(elm)->field.sqe_next;			\
300} while (0)
301
302#define SIMPLEQ_INSERT_AFTER(head, listelm, elm, field) do {		\
303	if (((elm)->field.sqe_next = (listelm)->field.sqe_next) == NULL)\
304		(head)->sqh_last = &(elm)->field.sqe_next;		\
305	(listelm)->field.sqe_next = (elm);				\
306} while (0)
307
308#define SIMPLEQ_REMOVE_HEAD(head, field) do {			\
309	if (((head)->sqh_first = (head)->sqh_first->field.sqe_next) == NULL) \
310		(head)->sqh_last = &(head)->sqh_first;			\
311} while (0)
312
313#define SIMPLEQ_REMOVE_AFTER(head, elm, field) do {			\
314	if (((elm)->field.sqe_next = (elm)->field.sqe_next->field.sqe_next) \
315	    == NULL)							\
316		(head)->sqh_last = &(elm)->field.sqe_next;		\
317} while (0)
318
319/*
320 * XOR Simple queue definitions.
321 */
322#define XSIMPLEQ_HEAD(name, type)					\
323struct name {								\
324	struct type *sqx_first;	/* first element */			\
325	struct type **sqx_last;	/* addr of last next element */		\
326	unsigned long sqx_cookie;					\
327}
328
329#define XSIMPLEQ_ENTRY(type)						\
330struct {								\
331	struct type *sqx_next;	/* next element */			\
332}
333
334/*
335 * XOR Simple queue access methods.
336 */
337#define XSIMPLEQ_XOR(head, ptr)	    ((__typeof(ptr))((head)->sqx_cookie ^ \
338					(unsigned long)(ptr)))
339#define	XSIMPLEQ_FIRST(head)	    XSIMPLEQ_XOR(head, ((head)->sqx_first))
340#define	XSIMPLEQ_END(head)	    NULL
341#define	XSIMPLEQ_EMPTY(head)	    (XSIMPLEQ_FIRST(head) == XSIMPLEQ_END(head))
342#define	XSIMPLEQ_NEXT(head, elm, field)    XSIMPLEQ_XOR(head, ((elm)->field.sqx_next))
343
344
345#define XSIMPLEQ_FOREACH(var, head, field)				\
346	for ((var) = XSIMPLEQ_FIRST(head);				\
347	    (var) != XSIMPLEQ_END(head);				\
348	    (var) = XSIMPLEQ_NEXT(head, var, field))
349
350#define	XSIMPLEQ_FOREACH_SAFE(var, head, field, tvar)			\
351	for ((var) = XSIMPLEQ_FIRST(head);				\
352	    (var) && ((tvar) = XSIMPLEQ_NEXT(head, var, field), 1);	\
353	    (var) = (tvar))
354
355/*
356 * XOR Simple queue functions.
357 */
358#define	XSIMPLEQ_INIT(head) do {					\
359	arc4random_buf(&(head)->sqx_cookie, sizeof((head)->sqx_cookie)); \
360	(head)->sqx_first = XSIMPLEQ_XOR(head, NULL);			\
361	(head)->sqx_last = XSIMPLEQ_XOR(head, &(head)->sqx_first);	\
362} while (0)
363
364#define XSIMPLEQ_INSERT_HEAD(head, elm, field) do {			\
365	if (((elm)->field.sqx_next = (head)->sqx_first) ==		\
366	    XSIMPLEQ_XOR(head, NULL))					\
367		(head)->sqx_last = XSIMPLEQ_XOR(head, &(elm)->field.sqx_next); \
368	(head)->sqx_first = XSIMPLEQ_XOR(head, (elm));			\
369} while (0)
370
371#define XSIMPLEQ_INSERT_TAIL(head, elm, field) do {			\
372	(elm)->field.sqx_next = XSIMPLEQ_XOR(head, NULL);		\
373	*(XSIMPLEQ_XOR(head, (head)->sqx_last)) = XSIMPLEQ_XOR(head, (elm)); \
374	(head)->sqx_last = XSIMPLEQ_XOR(head, &(elm)->field.sqx_next);	\
375} while (0)
376
377#define XSIMPLEQ_INSERT_AFTER(head, listelm, elm, field) do {		\
378	if (((elm)->field.sqx_next = (listelm)->field.sqx_next) ==	\
379	    XSIMPLEQ_XOR(head, NULL))					\
380		(head)->sqx_last = XSIMPLEQ_XOR(head, &(elm)->field.sqx_next); \
381	(listelm)->field.sqx_next = XSIMPLEQ_XOR(head, (elm));		\
382} while (0)
383
384#define XSIMPLEQ_REMOVE_HEAD(head, field) do {				\
385	if (((head)->sqx_first = XSIMPLEQ_XOR(head,			\
386	    (head)->sqx_first)->field.sqx_next) == XSIMPLEQ_XOR(head, NULL)) \
387		(head)->sqx_last = XSIMPLEQ_XOR(head, &(head)->sqx_first); \
388} while (0)
389
390#define XSIMPLEQ_REMOVE_AFTER(head, elm, field) do {			\
391	if (((elm)->field.sqx_next = XSIMPLEQ_XOR(head,			\
392	    (elm)->field.sqx_next)->field.sqx_next)			\
393	    == XSIMPLEQ_XOR(head, NULL))				\
394		(head)->sqx_last = 					\
395		    XSIMPLEQ_XOR(head, &(elm)->field.sqx_next);		\
396} while (0)
397
398		    
399/*
400 * Tail queue definitions.
401 */
402#define TAILQ_HEAD(name, type)						\
403struct name {								\
404	struct type *tqh_first;	/* first element */			\
405	struct type **tqh_last;	/* addr of last next element */		\
406}
407
408#define TAILQ_HEAD_INITIALIZER(head)					\
409	{ NULL, &(head).tqh_first }
410
411#define TAILQ_ENTRY(type)						\
412struct {								\
413	struct type *tqe_next;	/* next element */			\
414	struct type **tqe_prev;	/* address of previous next element */	\
415}
416
417/* 
418 * tail queue access methods 
419 */
420#define	TAILQ_FIRST(head)		((head)->tqh_first)
421#define	TAILQ_END(head)			NULL
422#define	TAILQ_NEXT(elm, field)		((elm)->field.tqe_next)
423#define TAILQ_LAST(head, headname)					\
424	(*(((struct headname *)((head)->tqh_last))->tqh_last))
425/* XXX */
426#define TAILQ_PREV(elm, headname, field)				\
427	(*(((struct headname *)((elm)->field.tqe_prev))->tqh_last))
428#define	TAILQ_EMPTY(head)						\
429	(TAILQ_FIRST(head) == TAILQ_END(head))
430
431#define TAILQ_FOREACH(var, head, field)					\
432	for((var) = TAILQ_FIRST(head);					\
433	    (var) != TAILQ_END(head);					\
434	    (var) = TAILQ_NEXT(var, field))
435
436#define	TAILQ_FOREACH_SAFE(var, head, field, tvar)			\
437	for ((var) = TAILQ_FIRST(head);					\
438	    (var) != TAILQ_END(head) &&					\
439	    ((tvar) = TAILQ_NEXT(var, field), 1);			\
440	    (var) = (tvar))
441
442
443#define TAILQ_FOREACH_REVERSE(var, head, headname, field)		\
444	for((var) = TAILQ_LAST(head, headname);				\
445	    (var) != TAILQ_END(head);					\
446	    (var) = TAILQ_PREV(var, headname, field))
447
448#define	TAILQ_FOREACH_REVERSE_SAFE(var, head, headname, field, tvar)	\
449	for ((var) = TAILQ_LAST(head, headname);			\
450	    (var) != TAILQ_END(head) &&					\
451	    ((tvar) = TAILQ_PREV(var, headname, field), 1);		\
452	    (var) = (tvar))
453
454/*
455 * Tail queue functions.
456 */
457#define	TAILQ_INIT(head) do {						\
458	(head)->tqh_first = NULL;					\
459	(head)->tqh_last = &(head)->tqh_first;				\
460} while (0)
461
462#define TAILQ_INSERT_HEAD(head, elm, field) do {			\
463	if (((elm)->field.tqe_next = (head)->tqh_first) != NULL)	\
464		(head)->tqh_first->field.tqe_prev =			\
465		    &(elm)->field.tqe_next;				\
466	else								\
467		(head)->tqh_last = &(elm)->field.tqe_next;		\
468	(head)->tqh_first = (elm);					\
469	(elm)->field.tqe_prev = &(head)->tqh_first;			\
470} while (0)
471
472#define TAILQ_INSERT_TAIL(head, elm, field) do {			\
473	(elm)->field.tqe_next = NULL;					\
474	(elm)->field.tqe_prev = (head)->tqh_last;			\
475	*(head)->tqh_last = (elm);					\
476	(head)->tqh_last = &(elm)->field.tqe_next;			\
477} while (0)
478
479#define TAILQ_INSERT_AFTER(head, listelm, elm, field) do {		\
480	if (((elm)->field.tqe_next = (listelm)->field.tqe_next) != NULL)\
481		(elm)->field.tqe_next->field.tqe_prev =			\
482		    &(elm)->field.tqe_next;				\
483	else								\
484		(head)->tqh_last = &(elm)->field.tqe_next;		\
485	(listelm)->field.tqe_next = (elm);				\
486	(elm)->field.tqe_prev = &(listelm)->field.tqe_next;		\
487} while (0)
488
489#define	TAILQ_INSERT_BEFORE(listelm, elm, field) do {			\
490	(elm)->field.tqe_prev = (listelm)->field.tqe_prev;		\
491	(elm)->field.tqe_next = (listelm);				\
492	*(listelm)->field.tqe_prev = (elm);				\
493	(listelm)->field.tqe_prev = &(elm)->field.tqe_next;		\
494} while (0)
495
496#define TAILQ_REMOVE(head, elm, field) do {				\
497	if (((elm)->field.tqe_next) != NULL)				\
498		(elm)->field.tqe_next->field.tqe_prev =			\
499		    (elm)->field.tqe_prev;				\
500	else								\
501		(head)->tqh_last = (elm)->field.tqe_prev;		\
502	*(elm)->field.tqe_prev = (elm)->field.tqe_next;			\
503	_Q_INVALIDATE((elm)->field.tqe_prev);				\
504	_Q_INVALIDATE((elm)->field.tqe_next);				\
505} while (0)
506
507#define TAILQ_REPLACE(head, elm, elm2, field) do {			\
508	if (((elm2)->field.tqe_next = (elm)->field.tqe_next) != NULL)	\
509		(elm2)->field.tqe_next->field.tqe_prev =		\
510		    &(elm2)->field.tqe_next;				\
511	else								\
512		(head)->tqh_last = &(elm2)->field.tqe_next;		\
513	(elm2)->field.tqe_prev = (elm)->field.tqe_prev;			\
514	*(elm2)->field.tqe_prev = (elm2);				\
515	_Q_INVALIDATE((elm)->field.tqe_prev);				\
516	_Q_INVALIDATE((elm)->field.tqe_next);				\
517} while (0)
518
519/*
520 * Circular queue definitions.
521 */
522#define CIRCLEQ_HEAD(name, type)					\
523struct name {								\
524	struct type *cqh_first;		/* first element */		\
525	struct type *cqh_last;		/* last element */		\
526}
527
528#define CIRCLEQ_HEAD_INITIALIZER(head)					\
529	{ CIRCLEQ_END(&head), CIRCLEQ_END(&head) }
530
531#define CIRCLEQ_ENTRY(type)						\
532struct {								\
533	struct type *cqe_next;		/* next element */		\
534	struct type *cqe_prev;		/* previous element */		\
535}
536
537/*
538 * Circular queue access methods 
539 */
540#define	CIRCLEQ_FIRST(head)		((head)->cqh_first)
541#define	CIRCLEQ_LAST(head)		((head)->cqh_last)
542#define	CIRCLEQ_END(head)		((void *)(head))
543#define	CIRCLEQ_NEXT(elm, field)	((elm)->field.cqe_next)
544#define	CIRCLEQ_PREV(elm, field)	((elm)->field.cqe_prev)
545#define	CIRCLEQ_EMPTY(head)						\
546	(CIRCLEQ_FIRST(head) == CIRCLEQ_END(head))
547
548#define CIRCLEQ_FOREACH(var, head, field)				\
549	for((var) = CIRCLEQ_FIRST(head);				\
550	    (var) != CIRCLEQ_END(head);					\
551	    (var) = CIRCLEQ_NEXT(var, field))
552
553#define	CIRCLEQ_FOREACH_SAFE(var, head, field, tvar)			\
554	for ((var) = CIRCLEQ_FIRST(head);				\
555	    (var) != CIRCLEQ_END(head) &&				\
556	    ((tvar) = CIRCLEQ_NEXT(var, field), 1);			\
557	    (var) = (tvar))
558
559#define CIRCLEQ_FOREACH_REVERSE(var, head, field)			\
560	for((var) = CIRCLEQ_LAST(head);					\
561	    (var) != CIRCLEQ_END(head);					\
562	    (var) = CIRCLEQ_PREV(var, field))
563
564#define	CIRCLEQ_FOREACH_REVERSE_SAFE(var, head, headname, field, tvar)	\
565	for ((var) = CIRCLEQ_LAST(head, headname);			\
566	    (var) != CIRCLEQ_END(head) && 				\
567	    ((tvar) = CIRCLEQ_PREV(var, headname, field), 1);		\
568	    (var) = (tvar))
569
570/*
571 * Circular queue functions.
572 */
573#define	CIRCLEQ_INIT(head) do {						\
574	(head)->cqh_first = CIRCLEQ_END(head);				\
575	(head)->cqh_last = CIRCLEQ_END(head);				\
576} while (0)
577
578#define CIRCLEQ_INSERT_AFTER(head, listelm, elm, field) do {		\
579	(elm)->field.cqe_next = (listelm)->field.cqe_next;		\
580	(elm)->field.cqe_prev = (listelm);				\
581	if ((listelm)->field.cqe_next == CIRCLEQ_END(head))		\
582		(head)->cqh_last = (elm);				\
583	else								\
584		(listelm)->field.cqe_next->field.cqe_prev = (elm);	\
585	(listelm)->field.cqe_next = (elm);				\
586} while (0)
587
588#define CIRCLEQ_INSERT_BEFORE(head, listelm, elm, field) do {		\
589	(elm)->field.cqe_next = (listelm);				\
590	(elm)->field.cqe_prev = (listelm)->field.cqe_prev;		\
591	if ((listelm)->field.cqe_prev == CIRCLEQ_END(head))		\
592		(head)->cqh_first = (elm);				\
593	else								\
594		(listelm)->field.cqe_prev->field.cqe_next = (elm);	\
595	(listelm)->field.cqe_prev = (elm);				\
596} while (0)
597
598#define CIRCLEQ_INSERT_HEAD(head, elm, field) do {			\
599	(elm)->field.cqe_next = (head)->cqh_first;			\
600	(elm)->field.cqe_prev = CIRCLEQ_END(head);			\
601	if ((head)->cqh_last == CIRCLEQ_END(head))			\
602		(head)->cqh_last = (elm);				\
603	else								\
604		(head)->cqh_first->field.cqe_prev = (elm);		\
605	(head)->cqh_first = (elm);					\
606} while (0)
607
608#define CIRCLEQ_INSERT_TAIL(head, elm, field) do {			\
609	(elm)->field.cqe_next = CIRCLEQ_END(head);			\
610	(elm)->field.cqe_prev = (head)->cqh_last;			\
611	if ((head)->cqh_first == CIRCLEQ_END(head))			\
612		(head)->cqh_first = (elm);				\
613	else								\
614		(head)->cqh_last->field.cqe_next = (elm);		\
615	(head)->cqh_last = (elm);					\
616} while (0)
617
618#define	CIRCLEQ_REMOVE(head, elm, field) do {				\
619	if ((elm)->field.cqe_next == CIRCLEQ_END(head))			\
620		(head)->cqh_last = (elm)->field.cqe_prev;		\
621	else								\
622		(elm)->field.cqe_next->field.cqe_prev =			\
623		    (elm)->field.cqe_prev;				\
624	if ((elm)->field.cqe_prev == CIRCLEQ_END(head))			\
625		(head)->cqh_first = (elm)->field.cqe_next;		\
626	else								\
627		(elm)->field.cqe_prev->field.cqe_next =			\
628		    (elm)->field.cqe_next;				\
629	_Q_INVALIDATE((elm)->field.cqe_prev);				\
630	_Q_INVALIDATE((elm)->field.cqe_next);				\
631} while (0)
632
633#define CIRCLEQ_REPLACE(head, elm, elm2, field) do {			\
634	if (((elm2)->field.cqe_next = (elm)->field.cqe_next) ==		\
635	    CIRCLEQ_END(head))						\
636		(head)->cqh_last = (elm2);				\
637	else								\
638		(elm2)->field.cqe_next->field.cqe_prev = (elm2);	\
639	if (((elm2)->field.cqe_prev = (elm)->field.cqe_prev) ==		\
640	    CIRCLEQ_END(head))						\
641		(head)->cqh_first = (elm2);				\
642	else								\
643		(elm2)->field.cqe_prev->field.cqe_next = (elm2);	\
644	_Q_INVALIDATE((elm)->field.cqe_prev);				\
645	_Q_INVALIDATE((elm)->field.cqe_next);				\
646} while (0)
647
648#endif	/* !_SYS_QUEUE_H_ */